
The Web’s Security Model

Philippe De Ryck

philippe.deryck@cs.kuleuven.be

Who am I?

 Philippe De Ryck
 Final year PhD student at iMinds-Distrinet, KU Leuven

 Research on Cross-Site Request Forgery and Session Management

 Author of CsFire, a browser add-on protecting against CSRF

 Contributor to the STREWS project
 Roadmapping activity for Web Security

 Main author of the Web-platform security guide:
Security Assessment of the Web Ecosystem

2

Introducing example.com

3

Public Information

Account Management

Private Customer Area

Public ForumLocation Information

Analytics
Twitter Integration

Modern web applications are often composed of several distinct features, all integrated into
one visual entity. This includes the incorporation of third-party code, such as social
integration (like buttons, trending gadgets, etc.), analytics or other useful gadgets.

Deploying example.com

4

BackendBrowser

When web applications are deployed, they have a server-side backend, which is responsible
for sending content to the client, and processing incoming requests from the client. At the
client-side, the browser hosts several contexts (e.g. windows, tabs, …) which run client-side
code, such as example.com’s forum page, or a completely different page, with potentially
malicious content. One might expect that these contexts are isolated in the browser, and that
third-party code within a context is subject to certain constraints. Unfortunately, the Web’s
security model differs from these expectations, resulting in common web vulnerabilities.

Deploying example.com in the Web

5

It can’t be that simple, right?

It isn’t 

Origin-based Isolation

6

BackendBrowser

At the client side, most security policies are enforced on origins, which consist of the triple
<scheme, host, port> (e.g. <http, example.com, 80>). The most prominent example is the
Same-Origin Policy (SOP), which isolates contexts from different origins within the browser.
Additionally, script-based fetching mechanisms (e.g. XMLHttpRequest), permission systems
(e.g. Geolocation), etc. enforce their security policy on the level of origins.

For our example application, this means that there is no effective isolation between the
client-side contexts. One consequence is the escalation impact of a vulnerability in one part
of the site, potentially giving the attacker unrestricted access to the entire web application.

Integration of Third-party Components

7

BackendBrowser

Integration of third-party components is a common practice in modern web development.
Code can be included as JavaScript, in which case it runs within the security context of the
including page (e.g. example.com), where it runs unrestricted. An alternative is including an
entire document in an iframe, where a developer can benefit from the same-origin policy to
enforce some boundaries, if the included code lives in another origin than the including
page.

In our example, this means that the analytics code and the twitter gadget, both included
JavaScript code, actually run within the security context of example.com. The included code
has unrestricted access to example.com’s client-side data and APIs, and can also send
requests to the backend, impersonating a legitimate user. While giving trusted code such
unrestricted access might be an acceptable risk, it certainly opens the door for abuse, either
willfully or through compromise of the third-party provider.

Remote Inclusion of Third-party Scripts

8

BackendBrowser

As said before, the integration of third-party components is a common practice. Very often,
these components are included directly from the third-party provider, by using the URL of
the remote script as the source of the script tag (e.g. <script src=“http://analytics.com/...”>).
If including third-party code posed a security risk, including it directly from the provider
increases this risk, due to lack of control over the third-party provider’s operational context.
A compromise of the third-party provider automatically escalates towards a compromise of
your web application.

In our example, the analytics code and the twitter gadget are loaded directly from the
provider, posing a potential security risk in case of compromise.

Compromise of Third-party Providers

9

One example of the compromise of a third-party code provider. The qTip2 library, a jQuery
plugin, has been compromised for 32 days (!) before it has been noticed, causing malware
insertions on numerous websites during this period.

Large-scale Study of Remote JS Inclusions

10

“88.45% of the Alexa top 10,000 web

sites included at least one remote

JavaScript library”

Reference: You Are what You Include: Large-scale Evaluation of Remote JavaScript Inclusions,
N. Nikiforakis et al.

Large-scale Study of Remote JS Inclusions

11

The study shows that the majority of sites includes a few JavaScript libraries (the left part of
the graph), but that some sites include scripts from numerous distinct hosts. The most
extreme example included scripts from 295 distinct hosts. Additionally, the study proposed a
metric to measure the security-consciousness of sites, and concluded that 12% of sites
considered security-conscious include at least one script from providers considered to be not
security-conscious.

Reference: You Are what You Include: Large-scale Evaluation of Remote JavaScript Inclusions,
N. Nikiforakis et al.

Mixed Content Inclusions

12

BackendBrowser

Deploying web applications over a TLS-secured channel (HTTPS) is a good practice, but
introduces a certain complexity. HTTPS-pages that include content from third-party content
providers often fetch these resources over a plain HTTP channel, leaving those resources
vulnerable to attacker manipulation.

In our example, we accidentally load the analytics code and twitter gadget over an insecure
channel, allowing an attacker to provide a compromised version, as well as to snoop on the
data transmitted with the request.

Large-scale Study of Mixed Content

13

14% exposed to request

forgery and cookie stealing

2% exposed to

DOM data leakage

27% exposed to

JavaScript execution

57% of HTTPS sites have

no mixed content inclusions

“43% of 18,526 HTTPS sites in the

Alexa top 10,000 has at least one

mixed content inclusion”

A study of the top 10,000 domains discovered 18,526 HTTPS sites, of which 43% include at
least one type of mixed content. While offering their site over HTTPS is an important step
forward, including non-HTTPS resources essentially nullifies a lot of the efforts.

Reference: Large-scale Analysis of Mixed-content Websites, P. Cheng et al.

Violating Context Isolation

14

BackendBrowser

While client-side contexts are separated by origin, the Web’s security model does not
prevent cross-origin communication between a client-side context and a server-side
resource. In itself, this communication is not a problem, and is often used in legitimate
scenarios (e.g. loading a remote resource, using a server-side API, …). However, due to the
implicit authentication mechanisms used today, the browser actually adds authentication
information to potentially illegitimate requests, causing a vulnerability known as Cross-Site
Request Forgery. While defenses against CSRF have been known for a while, many websites
fail to deploy them correctly, leaving vulnerabilities open for attackers. Examples of CSRF
victims are Google, Facebook, Youtube, online banking systems, webshops, etc.

In our example, an attacker-controlled context can easily send requests towards the backend.
The problem however is that the browser adds the authentication cookie used for
example.com, allowing the attacker-controlled context to create requests that appear to
come from the user. Using such forged requests, an attacker can execute any action in the
user’s name which is not explicitly protected against such attacks.

Reference: Cross-site request forgeries: Exploitation and prevention, W. Zeller et al.

example.com Revisited

15

BackendBrowser

In an ideal web, we’d like to deploy the example.com application within separate origins,
effectively leveraging the current security model to separate the private customer part from
the public forum. Additionally, within each client-side context, remote code only has
restricted access, thereby minimizing the risk of potential misbehavior by the included code.
Naturally, all the included resources are transferred over an HTTPS channel, preventing any
eavesdropping and manipulation attacks. Finally, we’d like to prevent an “untrusted” context
from making requests to the application’s backend, thus eradicating CSRF attacks.

Challenges for this Session

 Compartmentalization using origins
 Leverage the same-origin policy to isolate sensitive parts

 Sharing information and authentication
 Share authentication information between contexts
 Interact and exchange information between contexts

 Managing third-party code inclusion
 Managing the risk associated with potentially untrusted code
 Preventing mixed-content warnings

 Communication with the backend
 Enable legitimate communication from HTML and JavaScript
 Mitigate illegitimate requests from untrusted contexts

16

Compartmentalization

 Separation based on origin
 Naturally enforced by the Same-Origin Policy

 Allows you to separate sensitive parts and non-sensitive parts

 Prevents unintended sharing of information

 Prevents escalation of successful attack

17

SAME-ORIGIN POLICY

Content retrieved from one

origin can freely interact with

other content from that origin,

but interactions with content

from other origins are restricted

ORIGIN

The triple <scheme, host, port>

derived from the document’s URL.

For http://example.org/forum/, the

origin is <http, example.org, 80>

Deploying different parts of the application in different origins leverages the power of the
same-origin policy, the cornerstone security policy deployed in every modern browser.
Should an attacker succeed in compromising a non-sensitive part of the application, the
same-origin policy will help in preventing a quick escalation of the attack towards the
sensitive parts of the application.

Examples of the Same-Origin Policy

18

SAME-ORIGIN POLICY

Content retrieved from one

origin can freely interact with

other content from that origin,

but interactions with content

from other origins are restricted

example.com

example.com
example.com

private.example.com

forum.example.com

private.example.com

The top example shows both parts of the application residing in the same origin, and the
bottom example shows a compartmentalized application using subdomains. In both cases,
the public forum page is compromised by an attacker, who uses cross-site scripting
techniques to embed an iframe, which in turn loads the private part of the web application.
In the top example, the same-origin policy will not restrict the forum page from accessing,
inspecting and modifying the private page in the iframe. In the bottom example, the same-
origin policy will restrict this behavior, as the origin of both documents differs
(forum.example.com != private.example.com).

Note that any data stored within the origin (e.g. Web Storage, IndexedDB, API permissions,
cookies, …) is also available to any resource within that origin (the forum page in the top
example). Correct compartmentalization prevents such unintended leaks, as shown in the
bottom example.

Domains vs Subdomains

19

 Subdomains
 E.g. private.example.com vs forum.example.com

 Considered different origin

 Possibility to relax the origin to example.com using document.domain

 Possibility to use cookies on example.com

 Completely separate domains
 E.g. private.example.com vs exampleforum.com

 Considered different origin, without possibility of relaxation

 No possibility of shared cookies

Subdomains and Domain Relaxation

20

www.example.com

private.example.com

forum.example.com

account.example.com

document.domain = “example.com”;

DOMAIN RELAXATION

Documents that have the same parent domain (example.com) can choose to relax their
effective origin to example.com. Once they have done so, they can interact freely with other
documents that have the example.com origin, but not with documents that have not relaxed
their origin. In this example, the main document and the forum document have relaxed their
origin to enable interaction.

Note that once an origin is relaxed, there is no turning back (except for reloading the
document). There is also no restriction on which other documents under a subdomain of
example.com can join the club, which may be undesired. In this example, the forum page
relaxed its origin as well, enabling it to inspect its parent document, as well as the private
sibling document.

Compartmentalizing example.com

21

Public

Information

Account

Management

Private

Customer
Public

Forum

Sensitive Content

Needs cooperation

Origin

Deploy over HTTPS

Requires authentication

no yes yes no

no yes yes yes

preferable yes yes yes

no account private no

www.example.com

private.example.com

account.example.com

exampleforum.com

Compartmentalizing example.com

22

BackendBrowser

Separating the different parts of the example.com application into subdomains or alternate
domains effectively leverages the same-origin policy to provide client-side isolation between
contexts. As indicated, the account management and private customer area still need to
communicate, which will be covered later. Additionally, several parts require authentication,
implying that they also need to be deployed over an HTTPS channel.

In the next part, we will investigate how several isolated contexts can share authentication
information, preventing a user from having to authenticate separately for each part of the
application. Additionally, we will discover how isolated contexts can exchange information
via an opt-in messaging mechanism.

Authentication on the Web

23

 Typical authentication consists of two steps
 Entity authentication

 Maintaining the session associated with the authenticated user

 Entity authentication
 Exchanging username and password

 Challenge/response systems are also used

 Session management
 De facto standard is cookie-based session management

 Cookie contains unique identifier, associated with server-side state

Authentication on the Web consists of two important aspects:
• Entity authentication: The process of identifying the authenticating party. On the Web,

this is typically done by sending a username and password to the server. Alternative
systems use client certificates for a secure TLS connection (e.g. with the Belgian EID), a
challenge/response system (e.g. the Belgian banking systems), etc.

• Session management: Session management is the process of maintaining a session
specific to a certain user, allowing the web server to tie multiple requests together in a
single session. If a user authenticates himself to the web application, this information is
typically stored within the session. Note that a session can also exist for an anonymous
user, who has not yet authenticated himself. The de facto session management
mechanism on the web is based on cookies. Often, parameter-based session
management (a variable in the URL) is used as a fallback.

These topics are covered in detail in the session “Entity Authentication and Session
Management” by Jim Manico

Browser

Cookie-based Session Management

24

Server

Request www.example.com/index.html

Response Set-Cookie: SID=12345

Request www.example.com/login.html

Cookie: SID=12345

Response

Request www.example.com/login.php

Cookie: SID=12345

Response

Cookie Jar

www.example.com
SID=12345

Session Store

12345

auth: false

auth: true

user: Bob

The browser has a cookie-jar, where cookies are stored per domain. When a browser sends a
request to a server without a session identifier, typically the server will create a new session
with a random identfier, and send the identifier in a cookie to the browser. The browser
stores this cookie, and will include it in any future request towards the associated domain.
When the server receives a request with a session cookie attached, the server will first
lookup the associated session, after which the request is handled, while potentially using
information from the session (e.g. authentication state, …).

Modifying Cookie Behavior

25

 Domain
 Allows to broaden the applicability of the cookie

 E.g. example.com applies cookie to *.example.com

 Path
 Associates a cookie with a specific path

 E.g. /admin/ associates a cookie with /admin/*

 Conflicts with the same-origin policy

 HttpOnly
 Restricts a cookie from being accessed

through JavaScript

http://user.example.com/attacker/

http://user.example.com/victim/

The SOP allows direct

access to the iframe,

exposing

document.cookie

Cookie behavior can be modified using a set of predefined attributes, which are added to the
Set-Cookie header by the server. The available attributes are Domain, Path, Expires, HttpOnly
and Secure.
• Domain: The domain attribute allows to broaden the applicability of the cookie. By setting
this parameter to a parent domain of the current document, the browser will send the
cookie to all child domains of this parent domain. For example, setting a cookie with
Domain=example.com on a document hosted on foo.example.com will cause the browser to
send the cookie to any child domain of example.com.
• Path: The path attribute allows to limit the cookie to a specific path within the domain. The
browser will only send the cookie if the path value matches the URL of the document being
fetched. Note however that a mismatch between the cookie security policy and the Same-
Origin Policy allows to steal the cookie through JavaScript. If an attacker page on
http://user.example.com/attacker/ includes an iframe, with a document from
http://user.example.com/victim/, it is allowed by the SOP to directly interact with the context
of this iframe, since both documents have the same origin. The attacker page can now use
JavaScript to access the iframe and request the value of the document.cookie attribute,
which contains the cookie associated with the /victim/ path.
• Expires: Allows the specification of an expiration date for the cookie, after which the
browser will no longer use it.
• HttpOnly: Specifying this attribute (without value) tells the browser to use this cookie when
making requests, but to not disclose this cookie through the document.cookie property in
JavaScript. This effectively protects the cookie against script-based cookie-stealing attacks,
such as session hijacking.
• Secure: The secure attribute tells the browser to only send this cookie over an HTTPS
connection. The next slide covers this attribute in detail.

Cookies and HTTPS deployments

26

 Why the Secure flag matters
 Cookies are associated with a domain, not an origin

 No separation between cookies used on HTTP and HTTPS requests

 Use separate cookies for HTTP and HTTPS
 Associate different security levels to each cookie

 Require HTTPS cookie to be present for sensitive operations

http://attacker.com

http://secure.example.com/

Outgoing HTTP request, with

any non-Secure cookies for

secure.example.com

attached

The Secure attribute for cookies ensures that cookies issued on HTTPS connections will never
be sent on plain HTTP connections. This is important, since omitting this flag effectively
enables leaking of cookies. An attacker can simply load a subresource of secure.example.com
over an insecure connection, causing the browser to attach any non-secure cookie. If an
attacker is eavesdropping on the network traffic, this suffices to lead to a session hijacking
attack.

If cookies are used on both the HTTP part and the HTTPS part of the site, the developer
needs to take care that the HTTPS cookies are marked as Secure, and the HTTP part uses an
alternative set of cookies. Additionally, any sensitive operation at the server-side should
check the presence of the HTTPS session identifier, in order to prevent a session hijacking
attack.

BackendBrowser

Sharing Authentication in example.com

27

Secure, HttpOnly

cookie for

.example.com

Set alternate

session on the

exampleforum.com

domain

In our example application, both the private customer part and the account management
part require authentication. This authentication can be shared by setting the session cookie
on the example.com domain with the Secure flag, causing it to be sent to every subdomain of
example.com, but only over secure connections. Additionally, setting the HttpOnly flag
prevents any JavaScript-based cookie-stealing attacks.

The exampleforum.com part also requires authentication, but since it lives on a different
domain, the already-existing session cookie can not be easily shared. One solution is to issue
an alternate session ID for the exampleforum.com domain, which is set after the user has
authenticated himself. At the server-side, both session IDs refer to the same session. At the
client-side, issuing an alternate session identifier fits within the compartmentalization
strategy, since a stolen session identifier from exampleforum.com will not be valid on a
subdomain of example.com and vice versa.

Setting the alternate session identifier after login can be done with a simple request to a
server-side cookie-setting script. The new identifier is included as a URL parameter, and
bounced by the script as a session cookie (e.g. a request to
https://exampleforum.com/setSession.php?ALTSID=abcde will issue a response with a Set-
Cookie: SID=abcde; Secure; HttpOnly header). This technique is commonly deployed on the
Web, for example by the Google services.

Interaction between Contexts

 Related contexts
 Documents can open popup windows, embed frames, etc.

 Related cross-origin contexts are isolated by default

 Limited interactions possible (navigation, messaging APIs, …)

 Navigation
 Navigate child frame to different resource

 Navigate parent frame, reloading the entire document

 Exposed APIs
 Prime example: Web Messaging API, to support interaction

28

By default, different windows or tabs in a browser are isolated from each other, regardless of
the same-origin policy. However, documents embedded by means of iframes, or popup
windows opened from within a page are capable of interaction, if allowed by the same-origin
policy. For example, a document embedding an iframe from the same origin has full access to
the frame’s context. Embedding an iframe from a different origin triggers the SOP, which
limits interaction to navigation of the frame and access to a limited set of exposed APIs. All
other interactions will result in an exception, typically seen as a DOM Exception explaining
the violation of the SOP

Web Messaging API

 Messaging mechanism between contexts
 Used for iframes, Web Workers, etc.

 Event listener for receiving messages (opt-in mechanism)

 API function for sending data (text, objects, etc.)

 Security considerations
 Specify origin of receiver to prevent leaking of content

 Check origin of sender to prevent malicious use

 Validate incoming content before using data to prevent injection attacks

29

The Web Messaging API supports sending messages between contexts. A message can
consist of a simple String, or a cloneable object. Receiving messages is implemented by
means of an event handler, which listens to incoming messages. If an event handler is not
registered, incoming messages are simply discarded. Sending a message is done using the
postMessage function, an API call exposed on the window object of the context. This API call
is also accessible from cross-origin contexts, as long as a reference to the context can be
obtained.

When using Web Messaging, several security considerations need to be taken into account.
First, when sending a message, you need to specify the origin of the receiver, to ensure that
the message is delivered to the right party. Second, when receiving messages, you need to
verify the origin of the sender of the message. Failing to do so enables an attacker to send
arbitrary messages to your context, potentially causing harmful effects. Finally, when
receiving content which is processed further, validate the content before using it, in order to
prevent injection attacks.

Reference: Web Messaging API, W3C

Web Messaging API

30

var handler = function(event) {

if(event.origin ==

'http://www.example.com') {

alert(event.data);

}

}

window.addEventListener('message', handler, false);

RECEIVING MESSAGES

myframe.postMessage(data,'http://test.example.com');

SENDING MESSAGES

Example: a Client-side Storage Facility

31

https://storage.example.com/

Client-side

Storage API

Accessing local storage through Web

Messaing allows enforcing access control

and content inspection

The example in this slide offers a client-side storage facility, enabling the storage of
application data within the browser, while keeping control over who access what data, and
what content is stored in the data. The code managing the locally stored data (which is
bound to an origin) is hosted on a designated origin, which hosts no other application code.
Any context that needs access (read or write) to locally stored data can include the storage
code in an iframe. Within this frame, this storage code has access to the data stored within
its origin in the browser. Using the Web Messaging API, the context can send messages to the
storage context, asking to read or write some data. The storage context can check the origin
of the sender, and decide whether the operation is actually allowed or not. Additionally, the
storage context can enforce additional restrictions, such as the data format, the length of the
data, etc.

BackendBrowser

Interaction in example.com

32

Exchange

information using

Web Messaging

between iframes

In our example, the private customer area needs to communicate with the account
management area, to fetch account-related information. Making both contexts same-origin
using the document.domain attribute is one option, but this would allow other subdomains
of example.com to do the same, and gain undesired access to the private and account
management contexts. Therefore, we choose to embed a communication module of the
account management into an iframe, which we can then contact using the Web Messaging
API. The communication module is able to enforce a policy, exposing only the functionality
and data that it chooses.

Including Remote Content

 Types of remote content
 Images

 JavaScript

 CSS Styles

 HTML documents

 Including remote content
 Identified by a URL

 Fetched by the browser, and subsequently integrated

 For active content (e.g. JavaScript), the included code is typically
executed in the context of the including page

33

 SVG images

 Audio/video

 Plugin content (Flash, Java)

 …

Remote content can be found everywhere on the Web, ranging from a simple image
inclusion to loading entire frameworks through third-party JavaScript files. Numerous HTML
tags support the inclusion of remote content by specifying a URL for the source. The browser
will fetch the resource identified by the URL, and process it accordingly. For an image, this
means merely displaying the image in the dedicated location. For a script, this effectively
means executing the script code within the context of the page.

Mixed Content Problems

34

MIXED CONTENT INCLUSION

When an HTTPS-document

includes resources from non-

HTTP sources, potentially

compromising the integrity of

the document

Browser

Server

Attacker

Loaded HTTPS page which

requires additional resources

Deploying a site over HTTPS results in several security benefits, but also has an impact on the
web application itself. One example is the problem of mixed content inclusion, where an
HTTPS page includes content from non-HTTPS sources. Since such content can be
compromised by network attackers (e.g. a Man-in-the-Middle attack), it might compromise
the integrity of the entire page. In the example on this slide, an attacker succeeds in
compromising a included script from an HTTP source, giving him full control over the client-
side context of the including page.

Reference: Large-scale Analysis of Mixed-content Websites, P. Cheng et al.

Solving Mixed Content Problems

35

 Browsers blocking mixed content inclusion
 IE 7 started with prompting users, other browsers are following

 Active mixed content is typically blocked, passive content is allowed

 Localize remote resources
 Host remote resources locally within the application’s HTTPS domain

Suprisingly, the solution to avoiding mixed content problems is to avoid including non-HTTPS
resources in HTTPS documents. Popular resources (e.g. popular libraries, …) are available on
secure links, or hosted by providers such as Google. Alternatively, the non-secure resources
can be placed within the application’s HTTPS domain, allowing for a secure inclusion in
HTTPS pages. The downside of this approach is the need to keep the imported resource up to
date with its original repository.

At the browser-side, action is being taken to avoid mixed content security issues. IE7 was the
first browser to warn about mixed content inclusions, and recently, other browsers are
following. Typically, active mixedntent (script, stylesheets, Flash) is blocked, but passive
mixed content (e.g. images) are allowed to be loaded.

Reference: https://blog.mozilla.org/tanvi/2013/04/10/mixed-content-blocking-enabled-in-
firefox-23/

Integration of Remote Code

 Two mechanisms to integrate code
 Directly including JavaScript code using the <script> tag

 Including code through an iframe, which hosts a separate document

 Scripts
 Straightforward integration in the context, without restrictions

 Violates the security boundaries of a document

 Iframes
 Depending on the origin, the SOP restrictions apply

 Preserves the security boundaries, but may hinder interaction

36

Integration of remote code is a common practice on the modern Web. Examples are the
inclusion of libraries such as Google Analytics, advertisements, etc. HTML supports two
integration mechanisms: direct integration through the script tag, or the integration of a sub-
document using an iframe. The former loads the remote script in the security context of the
including page, effectively importing the script’s functions and variables into the current
execution context. Script integration does not offer any security boundaries, but also does
not restrict interaction between the included script and the hosting page. The latter solution,
iframe integration, requires an entire document to be loaded, which is instantiated with its
own execution context and security boundaries. If the origin of the iframe differs from the
including page, the SOP applies and the origin-based security boundaries are enforced. In
this case, free interaction between both contexts is no longer possible, but communication
mechanisms such as Web Messaging can be used to achieve controlled interaction.

Script-based Content Integration

 No security boundaries offered by browser
 Combination with remote providers is potentially dangerous

 Full access to the client-side context, including local resources

 Existing techniques to constrain scripts
 Localizing scripts  requires effort to update

 Safe subsets of JavaScript  requires compatibility with existing scripts

 Browser-based sandboxing  requires modifications to the browser

 Server-side rewriting  requires control over the scripts

 JavaScript-based sandboxing  upcoming technology

37

When integrating remote code through script inclusion, the remote code is imported into the
security context of the including page. This effectively grants the remote code the same
privileges as the rest of the page, giving the code full access to the page’s contents, cookies,
data stored at the client side, permissions granted to the page’s origin, etc. These
considerations need to be taken into account when including a script into the page, as it
implies a certain trust in the included script. Not only does the script have to be trusted, but
the provider also needs to be trusted to be legitimate, and to remain free of compromise in
the future.

Currently, there is no silver bullet solution to safely integrate remote code using script tags.
However, several different approaches have been proposed to mitigate the risks associated
with direct script inclusion:

- Localizing scripts: by hosting a controlled copy of the remote script, the risk of a
compromise of the provider can be severely limited. However, this approach requires
a developer to keep up to date with the remote scripts. Research suggests that a
weekly update schedule should suffice for this approach [1].

- Safe subsets of JavaScript: By limiting a script to a specific subset, once can ensure
that the script can only access the features that are exposed, preventing it from
gaining full access to the page’s context. One example of this technique is Adsafe, a
subset specifically aimed at the safe inclusion of JavaScript advertisements [2]

- Browser-based sandboxing: Several solutions modify the browser to isolate scripts
and enforce fine-grained security policies on them. This effectively restrains a script
to a specific set of accessible features. Unfortunately, these approaches require
browser modifications, which make deployment of such security measures difficult
[3]

- Server-side rewriting: By rewriting JavaScript code at the server-side, one can verify
whether a script adheres to a predefined security policy. One example of this
technique is Google Caja [4], which transforms a compliant script into a secure
module, assuring that the script will be constrained. The disadvantage of these

techniques is that they require control over the server-side JavaScript code, in order
to support the rewriting process.

- JavaScript-based Sandboxing: this approach brings the technique from server-side
rewriting to the client-side, ensuring that a script is contained in a sandbox, where it
can only access the features that it’s permitted to use. These techniques are
promising, but still subject to active research [5]. Consequently, they are not ready for
production use yet.

References:
[1] You Are what You Include: Large-scale Evaluation of Remote JavaScript Inclusions, N.
Nikiforakis et al.
[2] http://www.adsafe.org/
[3] WebJail: least-privilege integration of third-party components in web mashups, S. Van
Acker et al.
[4] http://code.google.com/p/google-caja/
[5] JSand: Complete client-side sandboxing of third-party JavaScript without browser
modifications, P. Agten et al.

Iframe-based Content Integration

 Iframes are controlled by the same-origin policy
 Documents with different origins are isolated by the SOP

 Well-suited to integrate separate components (e.g. advertisements)

 More difficult to achieve dynamic interaction

 HTML5 introduces the sandbox attribute
 Gives coarse-grained control over capabilities in an iframe

 Supports disabling scripts, plugins, forms, etc.

 Supports a unique origin, alienating the iframe from any other origin

 Well-suited for the integration of untrusted content

38

Iframes are a natural boundary within the browser, as the Same-Origin Policy effectively
isolates documents with different origins. Iframes are commonly used to include content
that does not require interaction with the hosting page. Examples are advertisements, social
media buttons, etc. One disadvantage of using iframes with different origins is the lack of
direct interaction. Interaction is however possible using the recently introduced Web
Messaging API, which will be covered in the next slide.

To enhance the security properties of iframes, HTML5 introduces the sandbox attribute. The
attribute can be used to configure further restrictions on the content within the iframe. For
example, by default, a sandboxed iframe is prevented from running scripts, running plugin
content, submitting forms, etc. Using the attribute, these permissions can be re-enabled if
desired. Additionally, the sandox attribute supports the assignment of a unique origin to the
iframe, effectively alienating the iframe from any other content that originated from the
same origin.

One ideal use case for the sandbox attribute is the inclusion of potentially untrusted content.
If you want to display user-provided content, which might contain potential XSS attacks, you
can simply load it in a sandboxed iframe with scripting disabled, effectively preventing the
attack from ever being executed.

The HTML5 sandbox attribute is covered in more detail in the session on Recent Web Security
Technology by Lieven Desmet

Best Practices for Integrating Code

 If possible, isolate the content in an iframe
 Use the sandbox attribute to enforce even more restrictions

 Especially true for untrusted content (e.g. user-provided)

 Only include code from trusted providers
 Google often provides mirrors of popular libraries

 Localize scripts for crucial applications
 Keep scripts regularly up-to-date

 Perform code reviews of the differences between versions

39

BackendBrowser

Remote Code in example.com

40

Remote

Providers

script

iframe

In our example, we have to include the analytics code as a script, since it requires full access
to the page, in order to monitor the user’s behavior. In this case, the script comes from
Google, and can be considered to be trusted. However, we need to be aware of the risk
associated with the direct inclusion of the analytics script. Should future JS-based sandboxing
technologies fully support the containment of the analytics script, giving it only access to the
page and not to the entire context, this approach is preferable.

The twitter gadget does not require interaction with the page, and can be loaded in an
iframe. Depending on the code being loaded in the iframe, it can either be loaded directly, or
needs to be integrated in a self-hosted HTML page, which is then loaded in the iframe. In
both cases, the sandbox attribute can be used to limit the features available to the framed
content.

Interacting with Remote Services

 Ways to interact remotely
 Triggered from HTML elements (image loads, forum submissions, …)

 Programmatically from JavaScript (XMLHttpRequest)

 Using alternative protocols (Web Sockets, WebRTC, …)

 Challenges with remote interaction
 Difficult to determine which context a request originated from

 Difficult to determine if a request was intended by the user

41

Remote interaction is an important concept in the Web, and several ways to trigger remote
interaction are available. A first method is through existing HTML elements, like an image, a
form, an iframe, etc. All of these elements trigger a request being sent from the browser,
resulting in remote interaction with a backend service. A second way is by using JavaScript,
more specifically the XMLHttpRequest API, to create and send custom requests. Finally,
several alternate protocols are being developed and deployed, such as Web Sockets,
WebRTC, etc.

Remote interaction originates in the browser, within some context, but the server typically
does not possess this information. Therefore, the difficulty with remote interaction is to
determine where a request originated from, and whether the request was actually intended
to be sent, or part of an attack like Cross-Site Request Forgery.

HTML-based Remote Interaction

 Several types of requests can be triggered
 GET requests from , <script>, …
 POST requests with control over body content from <form>

 Not affected by the Same-Origin Policy
 GET and POST requests can be sent to other origin
 Browser attaches available cookies to the request

 Session cookies are implicit authentication!
 Results in an attack known as Cross-Site Request Forgery

42

HTML elements embedded in a document can trigger the browser to send a GET or a POST
request to the target specified by the element. These requests are not restricted by the SOP,
so it is possible to send requests to a different origin than that of the document where the
request originates. Even more, the browser happily attaches any known cookies for the
target origin to that request. This behavior can be legitimate (e.g. embedding part of a
Facebook profile), but can also be malicious. The latter is known as Cross-Site Request
Forgery, and basically allows an attacker to execute actions with a vulnerable service in the
user’s name.

Cross-Site Request Forgery (CSRF)

Authenticated session

Browse to a compromised image gallery
(GET gallery.com/top10)

Page of images with an embedded CSRF attack

Execute action
(POST example.com/changeEmail, to=evil@gmail.com)

Email address changed in the background

Browser

Server
example.com

Continue browsing images

More images

Server
gallery.com

In a CSRF attack, an attacker tricks the user’s browser into sending a request in the user’s
name, causing uninteded changes at the server side. In this example, the user has an
authenticated session with example.com, and visits another site afterwards. This site has
been compromised, and an attacker injected code to trigger a request towards example.com,
to change the email address of the authenticated user. The moment the browser loaded the
gallery.com page, with the embedded code of the attacker, a request to example.com is sent,
with the available cookie attached. Key to the success of a CSRF attack is an existing
authenticated session with the target application.

Reference: Cross-Site Request Forgeries: Exploitation and Prevention, W. Zeller et al.

Mitigating Cross-Site Request Forgery

 Mitigation techniques need to be explicitly present
 Token-based approaches

 Origin header

44

example.com

<form action=“submit.php”>

<input type=“hidden” name=“token”

value=“qasfj8j12adsjadu2223” />

…

</form>

TOKEN-BASED APPROACH

When developing an application, the developer needs to explicitly take CSRF into account.
Two common mitigation techniques are available
• Token-based approaches: embedding a token into pages that will trigger a request resulting
in some action at the server-side is the most common approach. Any page of the site
embeds such a token, and requires it to be present when the action is sent to the server.
Since the attacker triggers the request from his page, no token will be present, and the
request can be ignored. Stealing a token from a legitimate page within the users browser is
not possible either, due to the restrictions enforced by the same origin policy.
• Origin header checking: Modern browser attach an Origin header to cross-origin requests.
This header contains the origin where the request originated from, allowing the server to
check whether the request is legitimate. If it comes from an unknown or unexpected origin,
it can safely be ignored.

Programmatic Remote Interaction

 Sending requests with XMLHttpRequest
 Supports different types of requests

 Possibility to modify/manipulate “safe” headers

 Response can be processed from within JavaScript

45

var url = “http://test.example.com/api.php”;

var req = new XMLHttpRequest();

req.open("GET", url, true);

req.onload = function(e) { … }

req.send();

SENDING REQUESTS

XMLHttpRequest is a JavaScript API allowing to create request objects, which can be
configured and subsequently sent to a remote server. The XHR API supports different HTTP
methods (GET, POST, PUT, DELETE), the use of custom headers, the use of custom body
formats, etc. Some restrictions are imposed to prevent the manipulation of browser-
provided security features, such as the Host header, the Origin header, etc. Other headers
can be modified, such as the Cookie header, or custom created header fields.

XHR requests can be sent synchronously and asynchronously, and when the response is
received, it can be processed from JavaScript. Response processing is entirely up to the code
making the request. For example, when receiving HTML code, it can be placed inside an
existing element on the page. When receiving data, for example in the JSON format, it can be
parsed into a JavaScript variable. Other examples are receiving encrypted data from a secure
service, which can be decrypted at the client-side, before being presented to the user

XMLHttpRequest and the SOP

 Same-origin requests
 No restrictions imposed on the use of XMLHttpRequest

 Custom headers, use of credentials, etc.

 Cross-origin requests
 Required to enable remote interaction (e.g. APIs) without hacks

 Enables capabilities not found in traditional HTML (e.g. PUT, DELETE)

 Legacy server code does not expect such cross-origin requests

 New security policy: Cross-Origin Resource Sharing

46

Traditionally, the use of XMLHttpRequest was limited to the same origin as the origin of the
document where the request originated. This functionality enabled the so-called AJAX
capabilities, allowing a site to send requests in the background, to load additional
information, contact a server-side API, etc.

With the growth of available online services, the need to use cross-origin APIs quickly
emerged, followed by ad-hoc solutions that enabled this functionality within the existing
Web security models. One way of achieving this is by loading a remote script file, with the
data embedded in it, along with a function to process the data. The problem with this
approach however, is that the remote site is not limited to only providing data, but can also
add additional code, opening a new range of injection attacks.

In response to these valid needs and security concerns, the XMLHttpRequest API has been
expanded to enable cross-origin requests. One important attention point in opening up the
powerful features of XMLHttpRequest across origins are the security assumptions made by
legacy servers. If a server provides an API with PUT and DELETE methods, which could
previously only be used within the same origin, it now becomes vulnerable to cross-origin
attacks. Therefore, the Cross-Origin Resource Sharing (CORS) security policy was introduced,
aiming to ensure that cross-origin XHR requests have no more unwanted side effects then
traditional HTML elements.

Cross-Origin Resource Sharing (CORS)

 Enables client-side cross-origin requests
 Opt-in mechanism to grant other origins access to certain resources

 Allows the easy use of online APIs without hacks

 Preventing additional attack vectors
 Configurable security policy to determine who can access response

 Preflight request to approve “dangerous” requests up front

 Attacker capabilities with CORS largely correspond to HTML elements

 Already used beyond XMLHttpRequest
 Regulating access to cross-origin HTML elements (canvas, …)

47

The Cross-Origin Resource Sharing specification describes the security policy that is used for
regulating access to cross-origin context. This specification is used by the XMLHttpRequest
Level 2 specification to implement the cross-origin behavior. CORS is an opt-in mechanism for
granting other origins access to certain resources or content. Legacy servers not aware of
CORS will not provide the required headers, which leads to a default deny decision, like it
would be in the pre-CORS Web.

The goals of the CORS specification is to prevent additional attack vectors beyond what is
possible with traditional HTML elements. For example, with a form element, you can trigger
a cross-origin POST request to any server. CORS does not prevent you from doing so, but
does requires additional security headers when using content types that can not be used in
combination with the form element. Similarly, cross-origin PUT and DELETe is not possible
with traditional HTML elements, so will be subject to additional security headers.

This topic is covered in more detail in the session about Recent Web Security Technology by
Lieven Desmet

Cross-Origin Resource Sharing (CORS)

48

var url = “http://api.provider.com/api.php”;

var req = new XMLHttpRequest();

req.open("GET", url, true);

xhr.withCredentials = true;

req.onload = function(e) { … }

req.send();

SENDING CORS REQUESTS

Access-Control-Allow-Origin: http://www.example.com

Access-Control-Allow-Credentials: true

Access-Control-Expose-Headers: APIVersion

CORS RESPONSE HEADERS

Sending cross-origin XHR requests does not differ from sending same-origin XHR requests.
The additional CORS security headers are added by the browser when the request is sent.
The only additional client-side feature is the explicit flag withCredentials, telling the browser
to use available credentials on the cross-origin request. Setting this flag can cause the
browser to explicitly request permission from the server to send a request with credentials,
to avoid new CSRF attack vectors.

CORS itself is implemented using request and response headers. For requests that are
considered to be harmless (i.e. also possible with HTML elements), the browser simply
makes the request. The server is responsible for checking whether this request is allowed to
be made (i.e. check the origin header), and if so, process the request accordingly. When
sending the response, the server can include several headers telling the browser how to
proceed:
• Access-Control-Allow-Origin: This header contains the origin that is allowed to access the

response. If this does not match the origin that made the request, the browser will
prevent access to the response of the CORS request

• Access-Control-Allow-Credentials: Indicates whether the request can be made with
credentials or not. If this does not match the credentials flag set when making the
request, the browser will prevent access to the request

• Access-Control-Expose-Headers: Allows the server to specify a list of custom headers that
can be exposed to the script making the request. Any headers not listed here will be
hidden from the script processing the response.

For requests that are traditionally not possible with HTML elements, the browser will send a
preflight request asking for permission to make the request. The preflight is an OPTIONS
request, which has no side-effects in case a legacy server does not expect it. By responding
with the appropriate CORS headers (there are more headers available to use with the
preflight), the server can instruct the browser to either allow or deny the request about to be
made. This approach effectively prevents any potentially dangerous requests from being sent
to an unexpecting server.

Sharing an API with CORS

49

- Allow wildcard origin

Access-Control-Allow-Origin: *

PUBLIC CORS API (/API/PUBLIC/)

- Check origin of request

- Check used method

- Perform traditional access control

- Execute request

- Add appropriate response headers

CORS PROCESSING CHECKLIST

- Allow the customer area origin

- Allow the use of credentials

- Expose the X-Version header

Access-Control-Allow-Origin: https://private.example.com

Access-Control-Allow-Credentials: true

Access-Control-Expose-Headers: X-Version

RESTRICTED CORS API (/API/ACCOUNTS/)

When processing a CORS request, it is important to check the properties of the request,
before deciding to process it. First, check the origin where the request originated from, to be
sure that it comes from a trusted origin (or any origin for public APIs). Second, check which
HTTP method is used, and only allow those you expect. Third, you shoud apply your
traditional access controls, such as checking the session for authentication status, etc. Once
the request is executed, it is important to set the necessary CORS response headers, to allow
the browser to grant access to the response.

In this slide, we give two examples of exposed CORS API. The first API is a publicly accessible
API, where no restrictions are imposed. If you don’t use credentials, and only serve simple
requests, you can use a wildcard for the allowed origin. This API is accessible to anyone, and
should therefore not disclose any private information.

The second API is a restricted API, disclosing account information. In our example
application, this information is used by the private customer area, and hence the policies
should only allow this origin to access this API. Futhermore, we allow the use of credentials
and also allow access to the custom X-Version header, which denotes the version of the
accounts API.

BackendBrowser

Remote Interaction in example.com

50

Remote

Providers

script

iframe

In our example, we previously enabled the private customer area to use an iframe and Web
Messaging to interact with the account management code. With the introduction of CORS,
we can alternatively directly use the account management API at the server-side to request
account information and perform account-related actions. The account management API
needs to expose the required operations, protected by the necessary CORS security checks
and headers.

Wrap Up

51

Take-home Message

 The origin is a core concept in web security

 Compartmentalize where possible

 Treat incoming messages as potentially untrustworthy

 Consider the trust relationship with external parties

52

An origin is the core concept in the Web and a driving force in web security. Your origin hosts
your content within the browser, has access to locally stored data and APIs and has
associated user-granted permissions. Furthermore, the origin is key to determining remote
access permissions, for example with the use of XHR and CORS.

A first advantage of compartmentalizing your web application is the introduction of natural
barriers, which prevent a quick escalation when a part of the application is compromised.
Additionally, it allows the necessary flexibility in deploying your application, such as
deploying part over HTTPS with separate session cookies, exposing part of your application
via a CORS API, etc.

An important advice, almost as old as the Web itself, is to treat incoming messages as
potentially untrustworthy. Every incoming message, everywhere, should be treated with
care, and should be validated. Three important questions need to be asked: where did the
message come from? Does it contain valid content? Do I expect and allow this message?
These questions hold for client-side interaction mechanisms such as Web Messaging, for
remote communication messages such as CORS, or for server-side code such as dealing with
SQL queries.

Finally, you should always consider the trust relationship with external parties. This is
relevant when choosing providers for code components, but also when deciding how to
integrate them into your application. If you are aware of the trust you place in these parties,
you are in a position to re-evaluate this trust at anytime, preventing the continued use of
potentially insecure code providers.

Further Reading

53

Further information can be found in the following documents:
• STREWS Web-platform security guide: Security Assessment of the Web Ecosystem: An
asset-centric overview of the current state of the security of the Web. Discussion of all major
vulnerabilities, countermeasures and best practices.
• The Tangled Web: This book covers all aspects of currently relevant security policies,
including the numerous browser quirks and tiny differences. The book also gives a good
overview of recently introduced technologies (CORS, sandbox, …)
• The Death of the Internet: This book covers a wide range of currently existing attack
scenarios, and discusses the technicalities, the attacker’s motivations, as well as potential
defenses

